Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Sci Rep ; 14(1): 9622, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671060

RESUMEN

The vacuolar sorting receptors (VSRs) are specific to plants and are responsible for sorting and transporting particular proteins from the trans-Golgi network to the vacuole. This process is critically important for various cellular functions, including storing nutrients during seed development. Despite many years of intense studies on VSRs, a complete relation between function and structure has not yet been revealed. Here, we present the crystal structure of the entire luminal region of glycosylated VSR1 from Arabidopsis thaliana (AtVSR1) for the first time. The structure provides insights into the tertiary and quaternary structures of VSR1, which are composed of an N-terminal protease-associated (PA) domain, a unique central region, and one epidermal growth factor (EGF)-like domain followed by two disordered EGF-like domains. The structure of VSR1 exhibits unique characteristics, the significance of which is yet to be fully understood.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Vacuolas/metabolismo , Dominios Proteicos , Modelos Moleculares , Cristalografía por Rayos X , Transporte de Proteínas
2.
Nat Commun ; 15(1): 747, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272885

RESUMEN

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.


Asunto(s)
Borrelia , Malaria , Plasmodium , Humanos , Senegal/epidemiología , Estudios Transversales , Malaria/diagnóstico , Malaria/epidemiología , Fiebre/epidemiología , Borrelia/genética
4.
Magn Reson Med ; 91(2): 541-557, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37753621

RESUMEN

PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen Eco-Planar/métodos
5.
medRxiv ; 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873325

RESUMEN

Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction that tracks the genetic composition of within-host viral populations over time and the lineages transmitted between hosts. We confirm that our model reliably describes within-host variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions more accurately than two leading methods on synthetic data, as well as in a controlled outbreak of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2 outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692 outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens, and provide an adaptable mathematical framework for tracking within-host evolution.

6.
medRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662407

RESUMEN

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata from febrile patients and healthy controls in a low malaria burden area. Using 16S and unbiased sequencing, we detected viral, bacterial, or eukaryotic pathogens in 29% of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15% and 3.7% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model to distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs. These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.

7.
Nat Commun ; 14(1): 4693, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542071

RESUMEN

Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.


Asunto(s)
Fiebre de Lassa , Virus , Humanos , Nigeria/epidemiología , Metagenómica , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Virus/genética
8.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428142

RESUMEN

We have adopted an open bioinformatics ecosystem to address the challenges of bioinformatics implementation in public health laboratories (PHLs). Bioinformatics implementation for public health requires practitioners to undertake standardized bioinformatic analyses and generate reproducible, validated and auditable results. It is essential that data storage and analysis are scalable, portable and secure, and that implementation of bioinformatics fits within the operational constraints of the laboratory. We address these requirements using Terra, a web-based data analysis platform with a graphical user interface connecting users to bioinformatics analyses without the use of code. We have developed bioinformatics workflows for use with Terra that specifically meet the needs of public health practitioners. These Theiagen workflows perform genome assembly, quality control, and characterization, as well as construction of phylogeny for insights into genomic epidemiology. Additonally, these workflows use open-source containerized software and the WDL workflow language to ensure standardization and interoperability with other bioinformatics solutions, whilst being adaptable by the user. They are all open source and publicly available in Dockstore with the version-controlled code available in public GitHub repositories. They have been written to generate outputs in standardized file formats to allow for further downstream analysis and visualization with separate genomic epidemiology software. Testament to this solution meeting the requirements for bioinformatic implementation in public health, Theiagen workflows have collectively been used for over 5 million sample analyses in the last 2 years by over 90 public health laboratories in at least 40 different countries. Continued adoption of technological innovations and development of further workflows will ensure that this ecosystem continues to benefit PHLs.


Asunto(s)
Ecosistema , Salud Pública , Programas Informáticos , Biología Computacional/métodos , Genómica
9.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310918

RESUMEN

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Asunto(s)
COVID-19 , Mpox , Infección por el Virus Zika , Virus Zika , Humanos , COVID-19/epidemiología , Pandemias , SARS-CoV-2/genética , Genómica
10.
Nat Commun ; 14(1): 574, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732505

RESUMEN

SARS-CoV-2 distribution and circulation dynamics are not well understood due to challenges in assessing genomic data from tissue samples. We develop experimental and computational workflows for high-depth viral sequencing and high-resolution genomic analyses from formalin-fixed, paraffin-embedded tissues and apply them to 120 specimens from six subjects with fatal COVID-19. To varying degrees, viral RNA is present in extrapulmonary tissues from all subjects. The majority of the 180 viral variants identified within subjects are unique to individual tissue samples. We find more high-frequency (>10%) minor variants in subjects with a longer disease course, with one subject harboring ten such variants, exclusively in extrapulmonary tissues. One tissue-specific high-frequency variant was a nonsynonymous mutation in the furin-cleavage site of the spike protein. Our findings suggest adaptation and/or compartmentalized infection, illuminating the basis of extrapulmonary COVID-19 symptoms and potential for viral reservoirs, and have broad utility for investigating human pathogens.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Genes (Basel) ; 14(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672959

RESUMEN

The human microbiome is a dynamic community of bacteria, viruses, fungi, and other microorganisms. Both the composition of the microbiome (the microbes that are present and their relative abundances) and the temporal variability of the microbiome (the magnitude of changes in their composition across time, called volatility) has been associated with human health. However, the effect of unbalanced sampling intervals and differential read depth on the estimates of microbiome volatility has not been thoroughly assessed. Using four publicly available gut and vaginal microbiome time series, we subsampled the datasets to several sampling intervals and read depths and then compared additive, multiplicative, centered log ratio (CLR)-based, qualitative, and distance-based measures of microbiome volatility between the conditions. We find that longer sampling intervals are associated with larger quantitative measures of change (particularly for common taxa), but not with qualitative measures of change or distance-based volatility quantification. A lower sequencing read depth is associated with smaller multiplicative, CLR-based, and qualitative measures of change (particularly for less common taxa). Strategic subsampling may serve as a useful sensitivity analysis in unbalanced longitudinal studies investigating clinical associations with microbiome volatility.


Asunto(s)
Microbiota , Femenino , Humanos , Bacterias/genética , Estudios Longitudinales , Factores de Tiempo , Manejo de Especímenes
13.
medRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36299420

RESUMEN

The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.

14.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144649

RESUMEN

New therapeutic options to combat the growing incidence of antimicrobial resistance are urgently needed. A 2015 publication reported the isolation and biological evaluation of two diketopiperazine natural products, cyclo(l-Trp-l-Arg) (CDP 2) and cyclo(d-Trp-d-Arg) (CDP 3), from an Achromobacter sp. bacterium, finding that the latter metabolite in particular exhibited strong antibacterial activity towards a range of wound-related microorganisms and could synergize the action of ampicillin. Intrigued by these biological activities and noting inconsistencies in the structural characterization of the natural products, we synthesized the four diastereomers of cyclo(Trp-Arg) and evaluated them for antimicrobial and antibiotic enhancement properties. The detailed comparison of spectroscopic data raises uncertainty regarding the structure of CDP 2 and disproves the structure of CDP 3. In our hands, none of the four stereoisomers of cyclo(Trp-Arg) exhibited detectable intrinsic antimicrobial properties towards a range of Gram-positive and Gram-negative bacteria or fungi nor could they potentiate the action of antibiotics. These discrepancies in biological properties, compared with the activities reported in the literature, reveal that these specific cyclic dipeptides do not represent viable templates for the development of new treatments for microbial infections.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Ampicilina , Antibacterianos/química , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Dicetopiperazinas/química , Dipéptidos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Estereoisomerismo , Incertidumbre
15.
PLoS One ; 17(9): e0273783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36103484

RESUMEN

The question of whether it is appropriate to attribute authorship to deceased individuals of original studies in the biomedical literature is contentious. Authorship guidelines utilized by journals do not provide a clear consensus framework that is binding on those in the field. To guide and inform the implementation of authorship frameworks it would be useful to understand the extent of the practice in the scientific literature, but studies that have systematically quantified the prevalence of this phenomenon in the biomedical literature have not been performed to date. To address this issue, we quantified the prevalence of publications by deceased authors in the biomedical literature from the period 1990-2020. We screened 2,601,457 peer-reviewed papers from the full text Europe PubMed Central database. We applied natural language processing, stringent filtering and manual curation to identify a final set of 1,439 deceased authors. We then determined these authors published a total of 38,907 papers over their careers with 5,477 published after death. The number of deceased publications has been growing rapidly, a 146-fold increase since the year 2000. This rate of increase was still significant when accounting for the growing total number of publications and pool of authors. We found that more than 50% of deceased author papers were first submitted after the death of the author and that over 60% of these papers failed to acknowledge the deceased authors status. Most deceased authors published less than 10 papers after death but a small pool of 30 authors published significantly more. A pool of 266 authors published more than 90% of their total publications after death. Our analysis indicates that the attribution of deceased authorship in the literature is not an occasional occurrence but a burgeoning trend. A consensus framework to address authorship by deceased scientists is warranted.


Asunto(s)
Autoria , Edición , Europa (Continente) , Humanos , Revisión por Pares , PubMed
16.
PeerJ ; 10: e13821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093336

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spread globally and is being surveilled with an international genome sequencing effort. Surveillance consists of sample acquisition, library preparation, and whole genome sequencing. This has necessitated a classification scheme detailing Variants of Concern (VOC) and Variants of Interest (VOI), and the rapid expansion of bioinformatics tools for sequence analysis. These bioinformatic tools are means for major actionable results: maintaining quality assurance and checks, defining population structure, performing genomic epidemiology, and inferring lineage to allow reliable and actionable identification and classification. Additionally, the pandemic has required public health laboratories to reach high throughput proficiency in sequencing library preparation and downstream data analysis rapidly. However, both processes can be limited by a lack of a standardized sequence dataset. Methods: We identified six SARS-CoV-2 sequence datasets from recent publications, public databases and internal resources. In addition, we created a method to mine public databases to identify representative genomes for these datasets. Using this novel method, we identified several genomes as either VOI/VOC representatives or non-VOI/VOC representatives. To describe each dataset, we utilized a previously published datasets format, which describes accession information and whole dataset information. Additionally, a script from the same publication has been enhanced to download and verify all data from this study. Results: The benchmark datasets focus on the two most widely used sequencing platforms: long read sequencing data from the Oxford Nanopore Technologies platform and short read sequencing data from the Illumina platform. There are six datasets: three were derived from recent publications; two were derived from data mining public databases to answer common questions not covered by published datasets; one unique dataset representing common sequence failures was obtained by rigorously scrutinizing data that did not pass quality checks. The dataset summary table, data mining script and quality control (QC) values for all sequence data are publicly available on GitHub: https://github.com/CDCgov/datasets-sars-cov-2. Discussion: The datasets presented here were generated to help public health laboratories build sequencing and bioinformatics capacity, benchmark different workflows and pipelines, and calibrate QC thresholds to ensure sequencing quality. Together, improvements in these areas support accurate and timely outbreak investigation and surveillance, providing actionable data for pandemic management. Furthermore, these publicly available and standardized benchmark data will facilitate the development and adjudication of new pipelines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Benchmarking , Biología Computacional , Análisis de Secuencia
17.
Muscle Nerve ; 66(2): 206-211, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35621349

RESUMEN

INTRODUCTION/AIMS: Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS: Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS: We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION: This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/patología , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Proyectos Piloto , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/patología
18.
Science ; 376(6599): 1327-1332, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35608456

RESUMEN

Repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased fitness underscores the value of rapid detection and characterization of new lineages. We have developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many nonspike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, ranks the fitness of lineages as new sequences become available, and prioritizes mutations of biological and public health concern for functional characterization.


Asunto(s)
COVID-19 , Aptitud Genética , SARS-CoV-2 , Teorema de Bayes , COVID-19/virología , Genoma Viral , Humanos , Mutación , Análisis de Regresión , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
19.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480627

RESUMEN

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , New England/epidemiología , Salud Pública , SARS-CoV-2/genética
20.
medRxiv ; 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35194619

RESUMEN

Repeated emergence of SARS-CoV-2 variants with increased fitness necessitates rapid detection and characterization of new lineages. To address this need, we developed PyR 0 , a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR 0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many non-spike mutations within the nucleocapsid and nonstructural proteins. PyR 0 forecasts growth of new lineages from their mutational profile, identifies viral lineages of concern as they emerge, and prioritizes mutations of biological and public health concern for functional characterization. ONE SENTENCE SUMMARY: A Bayesian hierarchical model of all SARS-CoV-2 viral genomes predicts lineage fitness and identifies associated mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA